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NOTE 

Given that this is a pdf-file presentation to a virtual meeting, without oral commentary,  
the best approach has seemed to be to prepare a presentation with additional written 
explanation, and to include references to material where further details of the author's 
approach can be found. References are given at the end of the presentation. 

This presentation is a slightly updated version of one given at the 2019 IVESC/IVNC 
meeting in Cincinnatti [R1].  Apologies to those who have seen much of this material 
before, but I think the majority of the audience will not have done so. 

In this presentation, all universal constants are given to 7 significant figures, but it is 
assumed that in practice these will be mathematically approximated, as suits the context.  

The author's permanent e-mail alias is:  r.forbes@trinity.cantab.net .  
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Electronic 
Engineering Introduction (1)  

Long-term aim is to put field electron emission (FE) onto a better scientific 
basis. 
 
This means 
(a) Improved theoretical treatments. 
(b) Better methodologies for comparing theory and experiment. 
 
There has been much useful recent progress in developing FE theory. 

But aspects of our FE experimental data analysis, especially the analysis of 
measured current-voltage (Im–Vm)  data, are about 90 years behind where the 
theory currently is.  
 
There seems an urgent need to improve FE Im–Vm data-interpretation 
methodologies, and to define and encourage "best practice".  
 
This presentation is primarily about FE data-analysis methodologies 
and underlying theoretical developments.  
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Engineering Introduction (2) 

In the longer term, this better FE science needs to be able to deal precisely, 
not only with relatively blunt metal emitters operating at room temperature, 
but also with 

 (a)  non-metallic emitters, especially semi-conductors & carbon 
nanotubes; 

 (b)  emitters with realistic shapes, including sharply pointed and 
"atomically sharp" emitters. 

 (c)   emitters operating at temperatures somewhat above room 
temperature. 

 
However, current reality is that (whatever the material and the nature of the 
emitter) virtually all FE data analysis is carried out within a physical model 
that disregards the existence of atoms, uses the Sommerfeld free-electron-
metal model, treats the emitter as it had a smooth planar surface, and takes 
the emitter temperature as effectively zero. 
 
Current reality is that, even within the context of this simplified model, many 
technological papers make conceptual/procedural errors of various kinds, 
and some consequently publish spurious emitter characterization data.  
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Engineering Introduction (3) 

Thus, improvement needs be a multi-stage process. 
 
Stage 1 is to develop and implement 

"21st Century smooth-planar-metal-like-emitter (SPME) methodology"   
 
Later stages will need to involve consolidation and development of 

 "point-form emitter methodologies", and 
 "atomic-level methodologies". 

 
This presentation is primarily about Stage 1.  The nature of later stages will 
be indicated towards the end of the presentation. The presentation needs to 
begin with some general and theoretical background. 
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Engineering Structure of presentation  

1.  Introduction 
2.  Background theory 

 (a)  Barrier and field definitions 
 (b)  "Ideal" FE devices/systems and the orthodoxy test 
 (c)  The historical "phases" of FE theory 
 (d)  The principal FE special mathematical function v(x) 
 (e)  FE equation formats 

3.  Improved analysis of Fowler-Nordheim plots 
4.  Analysis of Murphy-Good plots 
5.  Entrenched faults in technological FE literature 
6.  The empirical FE equation and power-k plots 
7.  Discussion 
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2a:  Barrier and field definitions 
 



Electrical & 
Electronic 
Engineering The Schottky effect and Schottky constant  

Consider a classical surface energy barrier of zero-field height H . 
Applying a surface field FL reduces the classical barrier by an energy ΔS . 
This is the Schottky effect. 
ΔS  is given by 

ΔS ≡  cS FL
1/2

  . 

This is the definition of the Schottky constant cS (or "c") . 
 
It is readily shown that (in the modern International System of Quantities, 
which uses ε0 in Coulomb's Law), cS is given by 

cS  ≡  (e3/4πε0)1/2 , 
 

where e is the elementary positive charge, and ε0 the vacuum electric 
permittivity. In FE customary units 

cS  ≅  1.199 985 eV (V/nm)–1/2   ≅  3.794 868×10–5  eV (V/m)–1/2 .    



Electrical & 
Electronic 
Engineering Two special barrier forms 

With models that assume smooth planar metal-like surfaces, two barrier 
forms are commonly used to model electron potential-energy variation 
normal to the surface: 

M=0 

the exactly triangular (ET) barrier 

H 

M(z)  =  H – eFz 
 

used by Fowler & Nordheim 
(1928)  

z 
slope = –eF  

the Schottky-Nordheim (SN) barrier  

H 

M(z)  =  H – eFz – e2/16πε0z 
 

used by Murphy & Good 
(1956)  

z 
slope = –eF  

M=0 



Electrical & 
Electronic 
Engineering Local barrier fields and scaled fields  

At any location "L" on an emitter surface, the local surface field that defines 
the tunnelling barrier is termed the local barrier field and denoted by F .  
 
A related quantity, the scaled field f  [for a barrier of zero-field height φ ] is 
formally defined by 

f   ≡  cS
2φ–2F  =  (e3/4πε0)φ–2F  ≅ (1.439 965 eV2 V–1 nm)⋅φ–2F  , 

where φ is the local work function. 
 
This parameter f plays an important role in modern FE theory. 
 
The value f=1 corresponds to the situation where the top of a SN barrier of 
zero-field height φ has been pulled down to the Fermi level. This occurs for a 
reference field FR given by 

FR   ≡  cS
–2φ2  ≅  (0.694 4615 eV–2 V nm–1)⋅φ2 .  

For example, for φ = 4.50 eV, FR ≅ 14.1 V/nm.  



Electrical & 
Electronic 
Engineering Advantages of using scaled fields  

Advantages of using scaled fields are: 
ü  can be measured with a FN plot, more accurately than fields; 
ü  useful for discussing emitter current-voltage behaviour; 
ü  unifying approach for the different conventions for describing fields; 
ü  for ideal emitters, are also scaled voltages and macroscopic fields; 
ü  f-ranges are more uniform as between materials than field-ranges; 
ü  proportional to barrier field, so easy to convert back (multiply by FR) ; 
ü  can be used to characterize onset of effects, e.g. turn-on or melting; 
ü  hence are used in the orthodoxy test. 
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Electronic 
Engineering Advantages of using scaled fields  

For example, criteria of emitter behaviour were noted long ago by Dyke and 
Dolan [R2], for one of their experimental systems. These criteria can be 
expressed in terms of characteristic ("emitter-apex") values (fC) of scaled 
field, as shown in the table below (modified from [R3]). 
[These fC -values apply to room-temperature emission, in traditional single-pointed-
emitter experimental geometry, for a tungsten emitter (with assumed work function 
4.50 eV). For simplicity, JkC

SN is calculated using (0 K) SN-barrier theory.] 
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2b:  Ideal FE devices/systems and the orthodoxy test 
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Engineering Ideal devices/systems  

At any location "L" on the emitter surface, the field F can be related to the 
measured voltage Vm by 

F  =  Vm/ζL , 

where ζL is the local voltage conversion length (VCL). ζL is a characterization 
parameter, not a physical length. 
 
A FE device/system is ideal if 

(a) at every emitter location "L", ζL  is effectively constant (with a location-
dependent value);  and 

(b) the measured current Im is equal to the emission current Ie . 
 



Electrical & 
Electronic 
Engineering Slope-related characterization parameters   

Measured current-voltage Im(Vm) data taken from an ideal FE device/system 
can be used to make an "ideal" Fowler-Nordheim (FN) plot of type 
ln{Im/Vm

2} vs 1/Vm . 
 
From the slope Sfit of a straight line fitted to this ideal Im(Vm)-type FN plot, an 
"ideal" characteristic VCL-value can be extracted using 

ζC
ideal   =   ζC

extr   =   –Sfit/stbφ3/2 , 

where b [≅ 6.830890 eV–3/2 V nm–1] is the second FN constant, and st is the 
fitting value of the slope correction function s (see [R4]). 
 
 



Electrical & 
Electronic 
Engineering Slope-related characterization parameters   

Measured current-voltage Im(Vm) data taken from an ideal FE device/system 
can be used to make an "ideal" Fowler-Nordheim (FN) plot of type 
ln{Im/Vm

2} vs 1/Vm . 
 
From the slope Sfit of a straight line fitted to this ideal Im(Vm)-type FN plot, an 
"ideal" characteristic VCL-value can be extracted using 

ζC
ideal   =   ζC

extr   =   –Sfit/stbφ3/2 , 

where b [≅ 6.830890 eV–3/2 V nm–1] is the second FN constant, and st is the 
fitting value of the slope correction function s (see [R4]). 
 
If wanted, an "ideal" characteristic field enhancement factor (FEF) γMC

ideal 

can be found using 
γMC

ideal   =  dM/ζC
ideal , 

where is dM the relevant system macroscopic distance. 
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Engineering Non-ideal devices/systems  

A non-ideal FE device/system has leakage current and/or ζL not constant. 

The related non-ideal FN plots are likely to be defective, and may yield 
spurious results for characterization parameters.  

Recognised causes of non-ideality include (amongst others): 
•  current-dependence in field enhancement factors; 
•  series resistance in the measurement circuit; 
•  field-dependent geometry (e.g., due to Maxwell-stress effects); 
•  heating-dependent changes in work function (due to adsorbate removal); 
•  effects due to field emitted vacuum space charge. 
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Engineering Non-ideal devices/systems  

A non-ideal FE device/system has leakage current and/or ζL not constant. 

The related non-ideal FN plots are likely to be defective, and may yield 
spurious results for characterization parameters.  

Recognised causes of non-ideality include (amongst others): 
•  current-dependence in field enhancement factors; 
•  series resistance in the measurement circuit; 
•  field-dependent geometry (e.g., due to Maxwell-stress effects); 
•  heating-dependent changes in work function (due to adsorbate removal); 
•  effects due to field emitted vacuum space charge. 

This presentation is about ideal devices/systems, which need to be 
considered first. 

There exists an orthodoxy test [R5] that can be applied to an experimental 
FN plot to determine whether the results are ideal. 
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2c: The historical phases of FE theory 
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Engineering Basics of field electron emission equations  

The core form of a FE equation gives the local emission current density 
(LECD) JL  in terms of local work function φ  and local barrier field F . 

The emission current  Ie  is found by integrating over the emitter surface and 
writing the result as 

Ie   =   ∫ JL dA   ≡   AnC JC ,  

where JC is the characteristic LECD at some chosen characteristic location 
"C" (often the emitter apex), and AnC is the related notional emission area. 
 
For ideal emitters Im = Ie , so we can write 

Im   =   AnCJC . 

The different "historical phases" of FE theory use different expressions for 
JL(φ,FL), and hence for JC(φ,FC), where FC is the characteristic barrier field at 
location "C".  



Electrical & 
Electronic 
Engineering The Fowler-Nordheim historical phase 

1.  The Fowler-Nordheim phase is based on the original (1928) FN equation 
[R6, as corrected in R7; see R8 for a modern re-derivation]: 

JC
orig   =   PF

FNaφ–1FC
2 exp[–bφ3/2/FC] , 

where a and b are the FN constants [R8], and PF
FN is a field-independent 

transmission pre-factor [details are unimportant]. This equation is derived 
using an exactly triangular (ET) tunnelling barrier.  

The so-called elementary FE equation omits the pre-factor, yielding 

JC
el   =   aφ–1FC

2 exp[–bφ3/2/FC] . 
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Engineering The Murphy-Good historical phase 

2.  The Murphy-Good (MG) phase assumes tunnelling through a planar 
image-rounded barrier, often now called a Schottky-Nordheim (SN) barrier.. 
The zero-temperature version of the MG (1956) FE equation ([R9], see [R4] for a 
modern re-derivation) can be written in the linked form 

JC
MG0  =  tF

–2JkC
SN , 

JkC
SN  ≡  aφ–1FC

2 exp[–bvFφ3/2/FC] . 

with JkC
SN the (characteristic) kernel current density for the SN barrier. 

vF and tF are particular values of the FE special mathematical functions v(x) 
and t1(x) where x is the Gauss variable (i.e., the independent variable in the 
Gauss Hypergeometric Differential Equation). These functions are 
discussed below. vF and tF are found by setting x=fC , e.g. vF= v(x=fC), where 
fC is the characteristic scaled field corresponding to barrier field FC.   
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2.  The Murphy-Good (MG) phase assumes tunnelling through a planar 
image-rounded barrier, often now called a Schottky-Nordheim (SN) barrier.. 
The zero-temperature version of the MG (1956) FE equation ([R9], see [R4] for a 
modern re-derivation) can be written in the linked form 

JC
MG0  =  tF

–2JkC
SN , 

JkC
SN  ≡  aφ–1FC

2 exp[–bvFφ3/2/FC] . 

with JkC
SN the (characteristic) kernel current density for the SN barrier. 

vF and tF are particular values of the FE special mathematical functions v(x) 
and t1(x) where x is the Gauss variable (i.e., the independent variable in the 
Gauss Hypergeometric Differential Equation). These functions are 
discussed below. vF and tF are found by setting x=fC , e.g. vF= v(x=fC), where 
fC is the characteristic scaled field corresponding to barrier field FC.   

In the MG (1956) paper, formal expressions for vF and tF were given in terms 
of complete elliptic integrals;  subsequently, many (about 20) different 
approximations for vF were developed. 
[This approach in terms of x and f replaces an older approach in terms of the 
Nordheim parameter y=f1/2 , which is now considered less satisfactory.] 
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Engineering 21st Century SPME theory  

3.  21st century smooth-planar-metal-like-emitter (SPME) theory includes two 
post-2000 developments. 

(a) Better understanding of the mathematics of v(x) including 
 an exact series expansion, and a simple good approximation. 
 [This new understanding in fact subtlely changes the physics.] 

(b) Replacing the factor tF
–2 by a more general pre-exponential correction 

factor λC that serves as a knowledge uncertainty factor. This leads to 
the so-called Extended Murphy-Good (EMG) FE equation for LECD: 

JC
EMG  =  λC JkC

SN , 

 with JkC
SN  as before. My current thinking (see [R10]) is that λC probably 

lies in the range 0.005<λC<14 . 
 

  

 
 
 



Electrical & 
Electronic 
Engineering 21st Century SPME theory  

3.  21st century smooth-planar-metal emitter (SPME) theory includes two 
post-2000 developments. 

(a) Better understanding of the mathematics of v(x) including 
 an exact series expansion, and a simple good approximation. 
 [This new understanding in fact subtlely changes the physics.] 

(b) Replacing the factor tF
–2 by a more general pre-exponential correction 

factor λC that serves as a knowledge uncertainty factor. This leads to 
the so-called Extended Murphy-Good (EMG) FE equation for LECD: 

JC
EMG  =  λC JkC

SN , 

 with JkC
SN  as before. My current thinking (see [R8]) is that λC probably 

lies in the range 0.005<λC<14 . 
 

For an ideal emitter, the EMG equation for measured current ImEMG is 

ImEMG  =  Af
SN JkC

SN 

where the formal emission area for the SN barrier Af
SN is given by 

 Af
SN  =   λC AnC . 

  

 
 
 



Electrical & 
Electronic 
Engineering The merit of the EMG equation for current   

As just indicated, for an ideal emitter, the EMG equation for measured 
current ImEMG is 

ImEMG  =  Af
SN JkC

SN . 

The merit of this equation is as follows. 

For given values of local work function and characteristic local barrier 
field, the kernel current density JkC

SN  can be calculated exactly. 

The current ImEMG can be measured precisely. 

Hence the formal emission area Af
SN (assuming a SN barrier) is, in 

principle, well-defined. 
 

Hence, the overall scientific problem can be split into two parts. 

(1) The theory of how to measure Af
SN precisely. 

(2) The theory of how to interpret measured Af
SN–values in terms of FE 

theory and the geometrical properties of the emitter. 

My interests are currently in the first of these problems, because it needs to 
be solved before substantial further scientific progress can be made.   
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2d: The principal FE special mathematical function v(x) 
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Engineering The FE special mathematical function v(x)  

My general strategy for dealing with "vF" has been: 

(a) Make a distinction between "modelling aspects" and "purely 
mathematical aspects". 

 Distinguish between the barrier-form correction factor νF
SN ("nu") used in 

modelling the SN barrier, and the mathematical function vF ("vee"). 

(b) In the mathematics, use the Gauss variable x rather than the Nordheim 
parameter y  [=+x1/2] . Thus write: v(x). 

(c) When discussing current-voltage characteristics and FN plots, use 
barrier fields and scaled fields f , noting vF= v(x=f). 

(d) When integrating over energies, the Nordheim parameter y is often 
useful, but I prefer to see this as an alternative modelling parameter, 
given by  y=+f1/2 . 

(e) In general terms, build a mathematical theory of v(x) that is analogous to 
the mathematical theory of sin(x) as developed 200 or so years ago. 
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Engineering The exact series expansion for  v(x) 

We now know an exact series expansion for v(x) [R11, but replace the symbol l' 
used there by the symbol x now preferred]. The lowest few terms are: 

 
 
 
 
 
 

 
It is also possible to write this in the form 

v(x)  =  (1–x )⋅[1 + P∞(x)]  +  xlnx⋅Q∞(x) 

where P∞(x) and Q∞(x) are two different infinite power series in x . 
 
Note that no terms in x1/2 appear in this exact series expansion. This shows  
that x (rather than y [= x1/2]) is the natural mathematical variable to use for 

the argument of v.   
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Engineering High-precision formulae for v(x) and u(x)  

High-precision (HP) formulae for v(x) and u(x) (accurate to better than   
8×10–10 in 0≤x≤1) exist, and have been implemented on a spreadsheet:  

 
 
 
 
 
 

 
 

 

 

 

The numerical expression for v(x) can be written formally as:  

v(x)  ≅   (1–x)[1 + PHP(x)]  +  xlnx⋅QHP(x) 
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Engineering Simple good approximation for v(x)    

A "simple good approximation" has also been found for v(x) 

v(x)  ≈  1– x + (x/6)lnx . 

Over the range 0≤x≤1, v(x) has values lying in the range 1 ≥ v(x) ≥0. 
Over this range, the expression above has absolute accuracy of 0.0024 or 
better, and relative accuracy of 0.33% or better. 
This accuracy is sufficient for nearly all room-temperature technological 
purposes. 
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Putting these things together, we have: 

Exact series expansion: 

v(x)  =  (1–x)[1 + P∞(x)]  +  xlnx⋅Q∞(x) . 

High-precision formula: 

v(x)  ≅   (1–x)[1 + PHP(x)]  +  xlnx⋅QHP(x) . 

Simple good approximation: 

v(x)  ≈  (1– x)  +  xlnx⋅(1/6) . 

 

All of these expressions have the same basic form: an expression that 
multiplies (1–x) PLUS an expression that multiplies xlnx.  

The function v(x) is mathematically unusual, because its precise definition 
as a series expansion requires TWO infinite power series. 
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Other FE special mathematical functions (SMFs) are defined as below. 
In SN barrier theory they have roles as shown (when x→f).    

u(x)  ≡  – dv/dx  [u(f) is –dv/df] 

t1(x)  ≡  v – (4/3) x dv/dx  [t1(f) is 1st-order Taylor correction factor] 

t2(x)  ≡  v/(1–x)  [t2(f) is 2nd-order Taylor correction factor]  

s(x)  ≡  v – x dv/dx  [s(f) is slope correction factor] 

w(x) ≡  ds/d(1/x)  [w(f) is curvature correction factor] 

r(x)  ≡  exp(η u)  [r(f) is 2012 intercept correction factor] 

Here  η  [≅ 9.836 239 (eV/φ)1/2] is a scaling parameter defined below. 
In the literature, t1(f)  is often simply denoted by "t" or "tF". 
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2e: Equation formats in Murphy-Good FE theory 
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Engineering Equation formats 

The kernel current density for the SN barrier can be written in many different 
formats. 

The following slides illustrate the most useful formats. 
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Engineering The primary scaled format for Jk

SN 

As already encountered, in conventional barrier-field format the kernel 
current density for the SN barrier is:  

Jk
SN   =   aφ–1F2 exp[–vFbφ3/2/F] . 

 
Substitute F=f FR , and define φ-dependent parameters η(φ) and θ (φ)  by 

η(φ)  =  bφ3/2/FR  =  bcS
2φ–1/2 , 

θ (φ)  =  aφ–1FR
2  =  acS

–4φ3 , 

where bcS
2  [≈ 9.836239 eV1/2] and acS

–4  [≈ 7.433979×1011 A m–2 eV–3] are 
universal constants.  

In scaled format (more precisely, “exact f-based one-term scaled format”) 
the expression for Jk

SN becomes 

Jk
SN  = θ f2 exp[–η v(f)/f] . 

For example, for φ= 4.50 eV, then η≈ 4.64, θ ≈ 6.77×1013 A/m2. 
 
This form is useful because there is only one independent variable (f).   
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SN 

As just seen, the scaled-format expression for Jk
SN is 

Jk
SN  = θ f2 exp[–η v/f] . 

From earlier, with x→f, v = s–uf, and r ≡ exp[η u]. Hence: 

Jk
SN   =  θ f2 exp[η u] exp[–sη /f]   =  rθ f2 exp [–sη /f] . 

This is the exact (f-based) two-term scaled format for Jk
SN (also called 

“slope format”). 

[“Scaled” means the scaling parameter η  is in the formula.] 
[“Two-term” means the expression used for v(f) has two terms.]  



Electrical & 
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Engineering Exact 2-term scaled format for Jk

SN 

As just seen, the scaled-format expression for Jk
SN is 

Jk
SN  = θ f2 exp[–η v/f] . 

From earlier, with x→f, v = s–uf, and r ≡ exp[η u]. Hence: 

Jk
SN   =  θ f2 exp[η u] exp[–sη /f]   =  rθ f2 exp [–sη /f] . 

This is the exact (f-based) two-term scaled format for Jk
SN (also called 

“slope format”). 

[“Scaled” means the scaling parameter η  is in the formula.] 
[“Two-term” means the expression used for v(f) has two terms.]  
 
This formula can ALSO be derived from the first two terms of a Taylor 
expansion of v(f) about an arbitrary value ft .  

Many approximate expressions exist for v(f), so many approximate 
expressions/values exist for r(f) and s(f). High-precision expressions also 
exist. 
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SN 

As just seen, the scaled-format expression for Jk
SN is 

Jk
SN  = θ f2 exp[–η v/f] . 

The “simple good approximation” v=1–f+(f/6)lnf, can be used to derive the 
good (f-based) three-term scaled format 

Jk
SN  ≈ θ  expη  f (2 –η/6)  exp[–η /f ] . 

 



Electrical & 
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Engineering Local-field-based scaled formats 

In all cases it is true that: 

η /f = bφ3/2/F ;    θ f2 = aφ–1F2 .         

These expressions can be substituted into any of the f-based scaled 
formats.  

For example, the good f-based three-term scaled format 

Jk
SN  ≈ θ  expη  f (2 –η/6)   exp[–η /f ] 

becomes 

Jk
SN   ≈  aφ–1 ⋅ expη  ⋅ F (2 –η/6) ⋅ exp[–bφ3/2/F ] . 
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For ideal FE devices/systems, it is true that: 

f  =  Vm/VmR , 

where VmR is the reference measured voltage for which f=1 and the top of a 
SN barrier (of zero-field height φ ) is pulled down to the Fermi level. 

This expression can be substituted into any of the f-based scaled formats.  

For example, the good f-based three-term scaled format 

Jk
SN  ≈ θ  expη  f (2 –η/6)   exp[–η /f ] 

becomes 
Jk

SN  ≈   θ  expη  (Vm/VmR) (2 –η/6) exp[–η VmR/Vm] . 
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Engineering Measured-voltage-based scaled formats 

For ideal FE devices/systems, it is true that: 

f  =  Vm/VmR , 

where VmR is the reference measured voltage for which f=1 and the top of a 
SN barrier (of zero-field height φ ) is pulled down to the Fermi level. 

This expression can be substituted into any of the f-based scaled formats.  

For example, the good f-based three-term scaled format 

Jk
SN  ≈ θ  expη  f (2 –η/6)   exp[–η /f ] 

becomes 
Jk

SN  ≈   θ  expη  (Vm/VmR) (2 –η/6) exp[–η VmR/Vm] . 
 

And the Extended Murphy-Good (EMG) FE equation for Im(Vm) can be written 
in voltage-based scaled format as 

ImEMG  =   Af
SNJk

SN   ≈  Af
SN θ  expη  (Vm/VmR)(2 –η/6) exp[–η VmR/Vm] . 

 

where VmR here is the reference measured voltage for the characteristic 
location “C”.  We return to this equation in connection with Murphy-Good 
plots    
 

 



Electrical & 
Electronic 
Engineering 3 

3.  Analysis of ideal FN plots 
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As already indicated, from the slope Sfit of a straight line fitted to an ideal 
Im(Vm)-type FN plot, a characteristic VCL can be extracted using 

ζC
extr   =   –Sfit/stbφ3/2 , 

where st is the fitting value of the slope correction function s . 
 
If wanted, a characteristic field enhancement factor (FEF) γMC

extr can be 
found from 

γMC
extr   =  dM/ζC

extr , 
 

where is dM the relevant system macroscopic distance. 
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Engineering The intercept fitting value rt  

This a general diagram that 
applies to many barriers and 
equations 
For the EMG FE equation: 

CYX = Af
SN aφ–1FC

2 . 
For the SN barrier 

ρt = rt . 
Also (in scaled format):  Xt = ft . 
The value of rt depends on the 
choice of “fitting point” "t" . 
 
 
 
 
  
  
 

 
 

  

Fitting values of s(f) and r(f)  are defined by st=s(ft), rt=r(ft), where the fitting 
value ft relates to the measured-voltage value where the experimental FN 
plot is parallel to the tangent to the theoretical FN plot. 

 

ln{rt} 

t 
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applies to many barriers and 
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For the EMG FE equation: 

CYX = Af
SN aφ–1FC
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For the SN barrier 

ρt = rt . 
Also (in scaled format):  Xt = ft . 
The value of rt depends on the 
choice of “fitting point” "t" . 
 
 
 
  
  
 

 
 

  

Fitting values of s(f) and r(f)  are defined by st=s(ft), rt=r(ft), where the fitting 
value ft relates to the measured-voltage value where the experimental FN 
plot is parallel to the tangent to the theoretical FN plot. 

 

ln{rt} 

t 



Electrical & 
Electronic 
Engineering Area extraction using an extraction parameter 

Let ln{RFN
fit} be the intercept of a line fitted to an ideal Im(Vm) FN plot. 

In the tangent method, as applied using the Extended Murphy-Good (EMG) 
FE equation, we have: 

 from: slope:  SFN
fit  =  – st bφ3/2ζC  ; 

 from: intercept:  RFN
fit   =   rt Af

SNaφ–1ζC
–2  . 

 

Hence:  RFN
fit (SFN

fit)2   =  (ab2) (rtst
2) φ2 Af

SN . 

This has eliminated ζC and we can write 

 Af
SN   ≡   ΛSN(φ, ft)  [RFN

fit (SFN
fit)2 ] , 

where (for a FN plot) the extraction parameter for the SN barrier ΛFN
SN(φ, ft) is 

defined as above and given by 

  ΛFN
SN(φ, ft)  =   1/[(ab2φ2) (rtst

2) ] . 

The value of ab2  ≅  7.192492 ×10–5 A eV–2 nm2 . 
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Large-area field electron emitters (LAFEs), such as carbon nanotube arrays, 
contain very many individual emitters.  For a LAFE, the formal emission 
area Af

SN derived from an Im(Vm)-type FN plot is always very much less than 
the LAFE macroscopic (or "footprint") area AM. The formal area efficiency 
αf

SN, defined by 
αf

SN   ≡  Af
SN / AM , 

is a measure of what fraction of the LAFE is actually emitting electrons. 
Obviously, the area efficiency αf

SN can be derived from an ideal LAFE Im(Vm)-
type FN plot if AM is known.    
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app) plots for a LAFE 

For a LAFE, the (measured) macroscopic (or "LAFE-average") current 
density JM is defined by 

JM  ≡   Im / AM , 

and a parameter FM
app called here an apparent macroscopic field can be 

defined by 
FM

app  ≡  Vm/dM , 

where, as before, dM is the relevant system macroscopic distance. [For the 
common parallel-planar-plate geometry, dM is the separation between the 
plates; other interpretations are needed in other geometries.] 
 
 
 
 
 
 
  
 

 
 



Electrical & 
Electronic 
Engineering JM(FM

app) plots for a LAFE 

For a LAFE, the (measured) macroscopic (or "LAFE-average") current 
density JM is defined by 

JM  ≡   Im / AM , 

and a parameter FM
app called here an apparent macroscopic field can be 

defined by 
FM

app  ≡  Vm/dM , 

where, as before, dM is the relevant system macroscopic distance. [For the 
common parallel-planar-plate geometry, dM is the separation between the 
plates; other interpretations are needed in other geometries.] 
 
The literature contains many examples of JM(FM

app) FN plots, i.e. plots of the 
form ln{JM/(FM

app)2 vs 1/FM
app . However, for a non-ideal emitter this 

methodology is flawed [R12], because the mathematical parameter FM
app as 

defined by the equation above may not be a true electrostatic field, and 
extracted characterization-parameter-values may be spurious. 

It is strongly recommended that FN plots should always be made using raw 
measured Im(Vm) data, and that an orthodoxy test should be applied before 
further analysis.  
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From definitions earlier (putting x→f):    

u(f)  ≡  – dv/df    

s(f)  ≡  v –  f dv/df  [s(f) is slope correction factor] 

r(f)  ≡  exp(η u)  [r(f) is 2012 intercept correction factor] 

So, if φ is known, and an expression for v(f) is assumed, all relevant 
correction factors can be expressed as functions of f . 
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The fitting value ft is not initially known. Usual approach is to define a first 
approximation "ft0" by s(ft0) = 0.95. Spreadsheet manipulations, using high-
precision (HP) formulae, yield ft0≈0.2815. Related values are: rt0≈ 125.05, 
rt0st0

2≈ 112.86 . 
For φ= 4.50 eV, this yields:   ΛFN

SN ~  6.1 nm2/A . 

The HP result for rt0st0
2 can be compared with results (for ft=ft0) derived from 

the 1970s approximations most commonly used in FE literature:  

Now that the high-precision (HP) formulae are easily available, all of the 
1970s (etc.) approximations are OBSOLETE. 

Note use of the high-precision (HP) formulae is marginally better than use of 
the “simple good approximation”.  
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However, even with the use of high-precision formulae, it remains difficult to 
extract well-defined characterization parameters from a FN plot. 

This is because Murphy-Good FE theory (and more sophisticated FE 
theories) predict FN plots to be slightly curved. 

In MG and EMG theory, if high-precision results are required, this causes 
difficulties of two kinds when fitting a straight line to a curved FN plot: 
(a)  The fitting value ft

  of scaled field (which is initially unknown) must be 
determined precisely. 

(b)  Because the fitted line represents a chord to the theoretical FN plot, 
rather than the tangent to the plot, a chord correction must be applied.  

It emerges that both these corrections depend on the range of f-values that 
the experimental data relate to. The combined extraction parameter varies 
accordingly. For φ= 4.50 eV, simulations suggest a maximum range for the 
combined extraction parameter Λcomb of approximately 

3.3 < Λcomb < 9.3 . 
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A further difficulty is that the relevant range of f-values is not initially 
known. 

All this suggests we look for a form of plot that IS theoretically expected to 
be a straight line (or very nearly a straight line). 

The most obvious possibility is the  Murphy-Good plot described below. 

A Murphy-Good plot is a special form of power-k plot. It is convenient to 
first give the theory of this more general form of data plot. 
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4.  Murphy-Good plots 
[see R13] 
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For any value of k, the so-called empirical FE equation has the form 

 I m  =  C Vm
k exp[–B/Vm ] , 

where k, C and B are initially treated as constants. Hence: 

ln{I m/Vm
k}  =  ln{C} – B/Vm  , 

A plot of ln{I m/Vm
k } vs 1/Vm is termed a power-k plot . 

If k, C and B are constant, then the plot should be exactly straight. 

 

A Murphy-Good (MG) plot is a special form of power-k plot for which 

k = 2 – η/6 . 

MG plots can be used with both the 1956 MG FE equation and the Extended 
MG (EMG) FE equation. Theory is given below for the EMG FE equation, 
since this is more general. 
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The  empirical FE equation is 

 I m  =  C Vm
k exp[–B/Vm ] . 

The equivalent equation in terms of characteristic scaled field fC is 

 I m  =  Cf fC
k exp[–Bf /fC .] , 

where Cf and Bf  are constants related to C and B .  

Using fC=Vm/VmR yields 

 I m  =  Cf (Vm/VmR)k exp[–BfVmR/Vm ] . 

Hence 

ln{I m/Vm
k}  =  ln{CfVmR

–k} – BfVmR/Vm . 

 

 

 

  

 

 

 

 
 



Electrical & 
Electronic 
Engineering Basic theory of power-k plots 

ln{I m/Vm
k}  =  ln{CfVmR

–k} – BfVmR/Vm . 

Hence, for an ideal FE device/system, the slope Sfit and intercept ln{Rfit} of a 
straight line fitted to a power-k plot are given by 

Sfit  =  – BfVmR , 

Rfit  = CfVmR
–k . 

Hence: 
Cf   =  Rfit |Sfit |k / Bf

 k  . 

The value of Bf is normally known, so the value of Cf can be determined 
(without the uncertainties associated with FN plots).   
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From earlier, the Extended Murphy-Good (EMG) FE equation for Im(Vm), in 
voltage-based scaled format, is 

ImEMG  ≈  Af
SN θ  expη  (Vm/VmR)(2 –η/6) exp[–η VmR/Vm] . 

By comparison with earlier equation 

 I m  =  Cf (Vm/VmR)k exp[–Bf VmR/Vm ] , 

we find:  k  =  2–η/6 , 

 Bf  = η ,

 Cf  =  Af
SN θ  expη . 

From previous slide:   Cf   =  Rfit |Sfit |k / Bf
 k . 

Hence:  {Af
SN}extr   =  ΛMG(φ ) Rfit |Sfit |(2 –η/6) , 

where the area extraction parameter for the MG plot, ΛMG(φ ), is given by 
ΛMG(φ )  =  1/[θ  expη ⋅ η(2 –η/6) ] . 

From definitions given earlier, θη2 = ab2φ2, hence 
ΛMG(φ )  =  1/[(ab2φ2)(expη  η –η/6)] . 
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For the Murphy-Good (MG) plot, the area extraction parameter is given by 

 ΛMG(φ )  =  1/[(ab2φ2) (expη  η –η/6)] . 

For the Fowler-Nordheim (FN) plot, it was shown that the area extraction 
parameter for the SN barrier is given by 

ΛFN
SN(φ, ft)  =   1/[(ab2φ2) (rtst

2)] . 

For extracting precise formal-area values, the MG plot is superior to the FN 
plot because the MG-plot extraction parameter does not need a fitting point 
to be determined. 

Another advantage of a MG plot is that the extraction parameter ΛMG(φ ) 
depends only weakly on work function φ , as illustrated in the Table below:  

  

expη ⋅η−η/6
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From earlier:         ln{I m/Vm
k}  =  ln{CfVmR

–k} – Bf VmR/Vm . 

For an ideal FE device/system, the slope Sfit of a straight line fitted to a 
voltage-based power-k plot or Murphy-Good plot is given by 

Sfit  =  – BfVmR  =  – ηVmR  =    – ηFRζC   =   – bφ3/2ζC . 
 

Hence (1): the characteristic voltage conversion length (VCL) ζC
extr can be 

extracted via 
ζC

extr  =  – Sfit/bφ3/2
 . 

A minor advantage of this formula is that it does NOT contain the slope 
correction factor that appears in FN-plot theory. 
 
Hence (2): the characteristic barrier-field value FC

extr corresponding to a 
given measured-voltage (Vm) can be measured using the formula 

FC
extr 

  =  Vm/ζC
extr . 

Hence (3) ... 
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Hence (3): the characteristic-scaled-field value (fC-value) corresponding a 
given measured-voltage can be extracted via 

fC
extr 

  =  Vm/VmR  =  – (η/Sfit)⋅Vm . 

Extracted fC-values that define the f-range apparently used in experiments 
can be used in an orthodoxy test based on an MG plot or power-k plot [R14]. 

 

The mathematical consistency of MG plot analysis has been validated by 
means of simulations. 
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To improve the interpretation of measured FE current-voltage data, 
“21st century smooth-planar-metal-like emitter (SPME) theory” has been 
developed and described. 

An immediate task is to persuade FE experimentalists to move to using  
“21st century SPME theory”, when presenting theory or interpreting 
measured FE current-voltage data. 

However, there are a number of entrenched faults in existing literature, and 
some poor practice, and these issues need to be addressed. These are 
described next. 
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5.  Entrenched faults in technological FE literature  
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Engineering Entrenched faults (1) 

Major faults in technological FE literature include the following. 
 
1.  Use of the original 1928/29 FN FE equation, rather than some form of the 

MG FE equation [R15]. 
As compared with the MG FE equation, the 1928/29 FN FE equation 
underpredicts local emission current densities by a factor typically of 
order 300. 
 

2.  With LAFEs, failure to distinguish between local emission current 
density and macroscopic current density, and omission (from stated 
equations in a paper) of a factor relating to area efficiency. 

This can lead to large discrepancies, whereby the equations given in 
a paper overpredict (by many orders of magnitude) experimental 
results shown in data plots. 
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3.  Extraction of characterization parameters from data plots taken from 
emitters with non-orthodox behaviour. This is a particular problem when 
raw Im(Vm) data is pre-converted to JM(FM

app) data before making a FN 
plot [R10]. 

Extracted values of the characterization parameter "field 
enhancement factor" can be spuriously high, by a factor of more than 
100 in the worst cases. 
 

Occasional minor problems include the following. 
 

4.  Failure to write equations in the dimensionally consistent form required 
by the 1970s reforms to the international system of measurement. 
  Apart from being "incorrect modern practice", this can lead to minor 

confusion about the units being used to measure field within the 
framework of the modern "International System of Quantities (ISQ)".   
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5.  Use of 1960s-style Gaussian-system equations (in which fields would be 
measured in the SI unit "J1/2 m–3/2", rather than use of the modern 
"International System of Quantities (ISQ)", in which the SI unit for 
electrostatic field is "V/m".  

Apart from being "incorrect modern practice", this can lead to 
confusion over the meaning of the symbol "E" (or "F"), and 
difficulties in evaluating formulae correctly. 
 

Persistent unhelpful practices include: 
 

6.  (In some papers) using the term "Fowler-Nordheim equation" as a name 
for the equation developed by Murphy and Good in 1956. 

 
7.  Failure to give references to any recent textbook or to any theoretical 

paper more recent than the original 1928 FN paper. 
 

 As noted in [R15], these last two things are community practices that 
appear to contribute to fault #1 noted above.   
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As stated earlier, the author's belief is that, in order to move FE science 
forwards, a necessarily preliminary step is to take out all the 
"misconceptions", "outdated/obsolete theory" and "poor practice" in 
present technological FE literature, and persuade FE experimentalists to 
move towards consistent use of “21st century SPME methodology", when 
presenting theory or interpreting measured FE current-voltage data. 
 
Within this methodology, there still are issues of whether multi-parameter 
numerical fitting would eventually yield more precise results than Murphy-
Good plots, and whether multi-parameter numerical fitting (or some other 
method) could reliably extract an "apparent local work-function value" from 
measured current-voltage data, particularly when the data is "noisy. 
 
After this preliminary step (called "Stage 1" earlier), one needs to move on 
to better data analysis procedures, but the necessary theoretical 
understanding of data-interpretation processes is not yet in place ….   
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Definition:  I use the term point-form emitter to describe an emitter that is 
shaped like a pointed needle or a rounded post, or is otherwise "pointy". 
 
With a point-form emitter, in principle there are at least three additional 
physical effects that need to be taken into account in current-voltage data 
analysis: 

A)  The effect of emitter shape on the integration of local emission current 
density across the emitter surface. 

B)  The effect of surface shape (in particular, local curvature) on the 
transmission probability. 

C)  The effect of atomic structure. 

It is also not inconceivable that there could arise fundamental quantum-
mechanical difficulties when attempting to make highly accurate 
calculations of transmission probability effects, for realistically shaped and 
structured emitters.  
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Effect (A) on the previous slide can be investigated by using various emitter 
shapes and the planar transmission approximation. This approximation 
takes the local emission current density (LECD) at at location "L" to be 
given by some appropriate version of planar transmission/tunnelling theory, 
taking the barrier field to be the local barrier field at location "L". 
 
Section 6. summarizes some preliminary investigations into this effect, 
previously briefly reported in [R16].    
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6.  The empirical FE equation and power-k plots 
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In point-form emitter theory, the value of k will NOT be given by the Murphy-
Good formula k = 2 – η/6 . 

We need to develop methods for determining the value of k experimentally. 

But first these need to be tested by simulations. 
 
Two obvious methods are the least-residual method and the local-gradient 
method.  We next begin to explore the first of these.   
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In power-k coordinates, the empirical FE equation has the form 

 ln{I m/Vm
k}  =  ln{C} –B/Vm  . 

Given a set of I m(Vm) data points, and a particular value of k, a straight line 
can be fitted to a power-k plot of these points by usual regression methods. 
The sum of the squared deviations of the data points from the fitted line is 
termed the residual and denoted by R(k). 

The variation of R(k) with k is explored, and the k-value that yields the least 
value of R(k) (the "least residual") is determined. 

  

 

 
 

The value of k found in this 
way is relatively well defined, 
as illustrated in the diagram 
alongside. [This shows results 
for four different methods of 
calculating I m(Vm) data sets].     
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Tests 1 to 3 seem to show that, from good data, k-values can be extracted 
with high accuracy. 

The other tests show that the form of pre-exponential has noticeable effects.  

 

 

Initial tests on the least residual method used the SPME model, and 1970s 
era planar emission theory, where some results are well known, and the 
LECD can be written in the slightly generalized form 

JL  =  τF
–2 aφ–1FC

2 exp[–bνFφ3/2/FC] . 
Various different approximate forms for JL, τF

–2 and νF are used. [ES= 
Elinson-Shrednik; F06="simple good approximation"; HP=high precision;  
MG300=Murphy-Good with 300 K temperature correction factor.]  
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Initial tests have also been conducted on a point-form emitter, using the 
hemisphere-on-cylindrical post (HCP) emitter model, with dimensions 
compatible with the carbon nanotubes (CNTs) used in experiments at the 
Ioffe Laboratory in Saint-Petersburg. [SW=single-walled CNTs; MW=multi-
walled CNTs.] To investigate the emitter shape effects "in isolation", the 
planar transmission approximation is used, which neglects the effect of 
emitter surface curvature on tunnelling probability. 
 
Results for various approximate emission theories are shown on the 
following slide. Results are given for the least residual (LR) method;  some 
results are also shown for the local gradient (LG) method. 
 
Main conclusions are: 

(1) In these simulations, the LR and LG methods give very similar results. 
[This may not be true for noisy experimental data.] 

(2) The difference from the results for the planar emitter model comes from 
the dependence of emission area on voltage (which contributes to k). In 
all cases tested here, this contribution is about kA= 0.5. 
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6.  Discussion 
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Engineering Implications for future activity 

This work has the following general implications. 

1.  There is a need to bring all technological FE up to the level of 
 "21st Century smooth-planar-metal-like-emitter theory”. 

2.  As part of this, there is a need to remove the various "pathological" 
entrenched errors in FE technological literature. 

With the growing attention being paid to issues of research integrity in 
science, it seems highly desirable to improve the state of FE literature as 
soon as possible. 

3.  It also seems urgent to continue investigations into methods of FE data 
interpretation that explicitly apply to point-form emitters, by taking 
emitter shape into account. 

4.  In the longer term, the ability to make accurate comparisons between FE 
experiment and theory may be of wider interest in tunnelling contexts, in 
particular in quantum biology. 
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