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Technical needs: Increasing performances are constantly demanded

to new gyrotrons. The heat load on the cavity wall is a major limiting

factor. In Raschig Rings (RR) cavities, heat transfer is limited by the

minimum Glidcop cavity thickness that ensures mechanical stability.

Actual mini-channel (MC) designs on the TH1507U 1.5MW 140GHz

CW gyrotron have shown unacceptable stresses (440MPa in nominal

conditions). The proposed system increases the heat exchange while

limiting thermo-mechanical stresses and anisotropic deformations.

Solution and design: The structure relies on an adaptive profile of

the outer element (jacket) that dilates and displaces during operation.

• To increase heat exchange: The fluid flow is placed as close as

possible to the heated wall.

• To limit stress: A bypass gap closes the MC once the thermal

steady state is reached

• To avoid friction: The axial displacement of the (flexible) water

jacket equals the cavity thermal expansion to follow cavity motion.

• To ensure the radial correct position of the jacket: Multiple inlets

injects a radial flow that counterbalances the MC inner pressure.
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Mockup realization: The proposed device can be realized by traditional mechanical processes and proven brazing techniques. A mock-up

has been manufactured for technological validation at KIT. Pressure drop have been measured and thermodynamic tests are ongoing at KIT.

Figure 7. Glidcop cavity and Mockup.

Computed performance: Compared to Raschig rings cooling solution, for the same initial peak heat load of 1.85 kW/cm2 and water flow of

50 l/min, a multiphysics simulation TH1507U cavity, shows a max temperature reduced from 279°C to 228°C with a stress level of 211

MPa, giving margin of 38 MPa before plasticization. The fatigue life is of 537000 ON/OFF cycles (reaching steady state regime).

Figure 3. Functional diagram of the proposed cooling system.
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Figure 1. TH1507 RR structure and stress profile (nominal conditions).
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Figure 2. First develop. of TH1507 MC structure and stress profile (nominal).

Figure 5. Profiles of heat load (left) and temperature distribution (right).

Figure 6. Profiles of radial displacement (left) and Von Mises Stress (right).
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TH1507U RR 1.96 279 292 220 -72 0.9

TH1507U MC 2.27 228 211 248 38 1.9

Figure 4. Temperature, velocity and fatigue life plots.

Table 1. Maximum values and comparison with RR solution (@50 l/min ).

Figure 8. Thales Hydrodynamic test bench. Figure 10. KIT Induction test stand.Figure 9. Pressure drop (meas vs sim).
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