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INNOVATIVE MINICHANNEL COOLING SYSTEM
FOR GYROTRON CAVITIES
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Technical needs: Increasing performances are constantly demanded
to new gyrotrons. The heat load on the cavity wall is a major limiting
factor. In Raschig Rings (RR) cavities, heat transfer is limited by the
minimum Glidcop cavity thickness that ensures mechanical stability.
Actual mini-channel (MC) designs on the TH1507U 1.5MW 140GHz
CW gyrotron have shown unacceptable stresses (440MPa in nominal
conditions). The proposed system increases the heat exchange while
limiting thermo-mechanical stresses and anisotropic deformations.
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Figure 2. First develop. of TH1507 MC structure and stress profile (nominal).

Solution and design: The structure relies on an adaptive profile of
the outer element (Jacket) that dilates and displaces during operation.

To Increase heat exchange: The fluid flow Is placed as close as

possible to the heated wall.

To limit stress: A bypass gap closes the MC once the thermal
steady state Is reached

To avoid friction: The axial displacement of the (flexible) water
jacket equals the cavity thermal expansion to follow cavity motion.
To ensure the radial correct position of the jacket: Multiple Inlets

Injects a radial flow that counterbalances the MC inner pressure.
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Figure 3. Functional diagram of the proposed cooling system.
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Figure 4. Temperature, velocity and fatigue life plots.

Stress margin

Peak heat |Peak cavity| Max V.M. N Pressure
load temperature strength L drop @ 50
(KW/cm?) oC (Mpa) | lasticization |
) margin (MPa)
TH1507U RR 1.96 279 292 220 -72 0.9
TH1507U MC 2.27 228 211 248 38 1.9

Table 1. Maximum values and comparison with RR solution (@50 I/min ).

Computed performance: Compared to Raschig rings cooling solution, for the same initial peak heat load of 1.85 kW/cm? and water flow of
50 I/min, a multiphysics simulation TH1507U cavity, shows a max temperature reduced from 279° C to 228 C with a stress level of 211
MPa, giving margin of 38 MPa before plasticization. The fatigue life is of 537000 ON/OFF cycles (reaching steady state regime).
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Figure 5. Profiles of heat load (left) and temperature distribution (right).
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Figure 6. Profiles of radial displacement (left) and Von Mises Stress (right).
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Mockup realization: The proposed device can be realized by traditional mechanical processes and proven brazing technigues. A mock-up
has been manufactured for technological validation at KIT.

0 A

Pressure drop have been measured and thermodynamic tests are ongoing at KIT.

et o

e Simulations results

=
(8

= Measure

Pressure Drop (bar)
o

o
o

10 20 30 40 50
Flow Rate (I/min) o ==t A —IT S

. B 00 e
f rl r A o 3 -

Figure 7. Glidcop cavity and Mockup. Figure 8. Thales Hydrodynamic test bench. Figure 9. Pressure drop (meas vs sim). Figure 10. KIT Induction test stand.
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