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Given the virtual nature of this conference, it has seemed most useful to present the additional 
material (beyond that in the Abstract) that would have been on an A0 Poster as a supplement to 
this abstract, in the "COMPARISONS" section below.  

 
ABSTRACT 

 
Within the context of smooth-planar-metal-emitter (SPME) theoretical methodology, the best simple model 
for describing the field electron emission (FE) tunnelling barrier is the Schottky-Nordheim (SN) ("planar 
image rounded") barrier. Use of this barrier within the context of the simple (or "first-order") JWKB 
mathematical tunnelling formalism leads to so-called Murphy-Good-type FE equations. For experiment-
facing theory, the author now prefers to use a so-called Extended Murphy-Good (EMG) FE Equation to 
describe the relationship between the emission current Ie and the emitter's characteristic local barrier field FC 
and local work function φ (usually taken as the emitter-apex values). This EMG equation has the form 
 Ie

EMG = Af
SN aφ–1FC

2 exp[–vFbφ3/2/FC], 
where a and b are the Fowler-Nordheim constants, Af

SN is the formal emission area for the SN barrier and vF is 
a particular value (appropriate to a barrier described by φ and FC) of the principal field emission special 
mathematical function v(x). Here, v(x) is expressed as a function of the Gauss variable x, which is my name 
for the independent variable in the Gauss Hypergeometric Differential Equation. The function v(x) is a special 
solution of this equation, and it can be shown that v(x) is applied to FE theory by setting vF=v(x=fC), where 
the characteristic scaled field fC is related to the barrier field FC by fC≡(e3/4πε0)φ–2FC. 

We now know that v(x) is an unusual mathematical function in that its efficient representation as an exact 
series expansion requires TWO infinite power series, rather than one. Hence, efficient representation 
CANNOT be obtained by simple Taylor expansion.  

In FE literature there exist many (around 20) different approximate mathematical formulae for vF, mostly 
expressed as functions of fC, or more commonly of the related variable y [=+√fC] called the "Nordheim 
parameter". All of these can be seen as derived from different mathematical approximations for v(x). The 
purpose of this Poster is to classify these different approximations for v(x), and indicate typical mathematical 
accuracies in the range 0.15≤ x ≤0.45, which is the "pass" range for fC in the orthodoxy test [see R.G. Forbes, 
Proc. R. Soc. Lond. A 469, 20130171 (2013)]. 

The main divisions of the classification are: (1) whether it is an "old" approximation, effectively based on 
a single power series, or a "new" approximation, effectively based on the (mathematically correct) use of two 
power series; (2) how many terms are used in the approximation. 

It will be pointed out that the use of "old" approximations (which is still widespread in current literature) 
should now be regarded as obsolete, first because the "new" approximations are of higher accuracy, second 
because the "old" approximations do not lead to "best physics" in the analysis of experimental current-voltage 
data or in the on-going development of improved  data-analysis theory. 
 
 

COMPARISONS 
 

1. Introduction 
 
1.1  General background 
 

In the original papers, expressions for what I now call the principal field emission special mathematical 
function "v" were given in terms of the scaled field f or (in older papers) the Nordheim parameter y [=+√f]. It 
is now known that the function "v" is in fact a very special solution of the Gauss Hypergeometric Differential 



  

 

Equation (HDE). Hence, best mathematical procedure is to express "v" as a function of the independent 
variable in the Gauss HDE. I call this the Gauss variable and denote it by the symbol x. Thus, I write "v(x)". 
In accordance with the usual international convention for typesetting special mathematical functions, I now 
typeset the symbol "vee" upright.  

More generally, I am now making a distinction between the pure mathematics of the function v(x) and the 
applications of this function in modelling (which exist in several different contexts). In order to apply this 
function to the kind of modelling that exists in the context of the theory of field electron emission (FE) from 
metals, one either sets x=f or sets x=y2. The author's view is that setting x=f is normally the most useful 
procedure, especially when discussing current-voltage characteristics, but that setting x=y2

 can be useful in 
theoretical derivations that involve integrations with respect to the energies of electron states. 

Since this is a document about mathematical approximations, all formulae for "vee" that are expressed 
elsewhere in terms of y or in terms of f have been converted here to be formulae in terms of x . 

 
1.2  Range of interest 
 

In the author's "orthodoxy test" [1], it is assumed (based on multiple experimental analyses) that room-
temperature field electron emitters normally operate within the scaled-field range 0.15<f<0.45.  Comparisons 
of accuracy are therefore made here, as in [2], for this range. The comparisons are made with the results from 
the "high-precision" approximation, which has itself been validated by comparing results with "exact" values 
obtained by means of MAPLE™ computer-algebra evaluations of a definition of v(x) in terms of complete 
elliptic integrals. These MAPLE™ evaluations are capable of yielding results correct to at least about 30 
decimal places.  
 

 
2.  Approximations 
 
2.1  The most commonly used "old" (now obsolete) approximations 
 
The most commonly used "old" approximations (are shown in Table 1. A wider comparison, involving older 
approximations now less frequently used, was made in [2].  All these "old" approximations have now been 
made obsolete by the (more accurate) modern Forbes-Deane approximation. 
 

Table 1:  Comparison of approximations for v(x). 
Name, date and & reference Mathematical form Maximum absolute error 

in 0.15≤x≤0.45 
Maximum relative error 

in 0.15≤x≤0.45 

Old approximations    
Charbonnier-Martin (1962) [3] v(x)≈ 0.956–1.062x 0.011 2.2% 
Elinson-Shrednik (1974) [4] v(x)≈ 0.95–1.03x 0.0047 0.59% 
Spindt et. (1976) [5] v(x)≈ 0.95–x 0.013 2.4% 

21st-Century approximations    

Forbes-Deane (2006) [6] 
("Simple good approximation") v(x)≈ 1–x+(1/6)xlnx 0.0024 0.33% 

High-precision approximation 
(2007) [7] See below. < 8×10–10 not relevant 

 
 
 
 
 
2.2  The 21st-Century expressions for v(x) 
 
As discussed in the main presentation for this conference [8], the mathematical basis for the so-called "21st-
Century" approximations is knowledge of the form of the exact series expansion for the special mathematical 
function v(x) [9, but replace the symbol l' used there by the symbol x now preferred].  It can be shown that 
this series expansion can be put in the slightly modified but equivalent form shown in Table 2. 
 
 



  

 

Table 2:  To show the forms of the "21st-Century" expressions for v(x). 

Name  Form 
Exact series expansion (modified form) v(x) ≡ (1–x){1+P∞(x)} + (xlnx)·Q∞(x) 
High-precision (HP) approximation v(x) ≅ (1–x){1+PHP(x)} + (xlnx)·QHP(x) 
"Simple good approximation" v(x) ≅ (1–x) + (xlnx)·(1/6)  
 
In Table 2,  P∞(x) and Q∞(x) are two infinite power series that can be derived from the two infinite power 
series defined in [7 ]. PHP(x) and QHP(x) are two four-term power series defined in the following way. 
 

  
PHP (x) ≡  pix

i ,
i=1

4

∑        QHP (x) ≡  qix
i−1

i=1

4

∑ , 

 
where the coefficients pi and qi are given in the following table. 
 

i pi qi 

1 0.032 705 304 46 0.187 499 344 1 
2 0.009 157 798 739 0.017 506 369 47 
3 0.002 644 272 807 0.005 527 069 444 
4 0.000 089 871 738 11 0.001 023 904 180 

 
These values were derived by numerical fitting to the computer-algebra evaluations of v(x) as described 
above. 
 
 
2.3  Physical implications 
 

In the exact mathematics, and related approximations, the existence of the term in "xlnx" has an important 
physical implication. When a related FE equation is expressed in Fowler-Nordheim or Murphy-Good 
coordinates, then the term in xlnx modifies the form of the pre-exponential, and hence affects the value of the 
"formal emission area" extracted from the related plot. Thus, it is likely that––in order to develop experiment-
based FE science––much greater attention needs to be paid to the precise measurement and physical 
interpretation of the parameter "formal emission area" (Af

SN). In particular, the Forbes-Deane approximation 
allows the introduction of "Murphy-Good plots" [10], which allow more precise measurement of Af

SN than 
Fowler-Nordheim plots. 
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