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Object of the measurements

High power electron beam facilities Gesa with the plasma
cathode:

e sub millisecond pulse duration;
» large beam aperture;

* high electron energy. e
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Decisive influence on the stability of the Gesa-operation
and the beam quality — plasma forming areas: cathode and
target.

Requirements for the plasma cathode: high electron
emissivity; long time scale stability.

Target plasma: suppression of the negative influence on the
cathode function due to of the ion beam and avoid of the
breakdown between the control grid and the anode.

Regions of interest for measurements

« Emission edge of cathode plasma — electric field
distribution, width of space charge layer.

» Target plasma — formation, time evolution, acceleration
voltage for ion beam

Expected electric field strength
« Emission edge of the cathode plasma — about 1 kV/cm
« At the front of target plasma — about 10 kV/cm

The width of Langmuir layer — several hundred micrometers



Classical LIF diagnostic method A\‘(IT
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lonization state Sufficient sensitivity to the electric fields around 1kV/cm can
---------------------- < be achieved by selecting Rydberg levels with relatively high
A < E n-number which are close to the continuum.
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Scaling laws for properties of the Rydberg states

Ground state Limitation:

e Measurement by scanning the excitation wavelength — high
accuracy, acceptable sensitivity, requires high reproducibility of
the event.

 Measurement of the shift of the fluorescence wavelength — low
accuracy and sensitivity, requires high quality of signal and
excellent performance of spectroscopic devices

* Loss of population of the excited level by high rate of ionization

LIF principle

The measured signal corresponds to a transition
directly from the disturbed level



LIF-dip method
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In 1998, U. Czarnetzki et al. introduced a laser- ] 2100 Vicm
induced fluorescence-dip (LIF-dip) spectroscopy

In 2006, E Wagenaars etc gathered
based on the double resonance of hydrogen atoms. g g

dips through LIF
 The xenon pressure 50 Pa.
e The electric field measured: 500-
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A
2% 205 om Limitation:
n=1 For the measurement of the electric field in one point it is
LIF-dip measurement necessary to make several measurements under the same
conditions to form the profile of the dip.
Benefits:
* Fluorescence signal itself is not affected by external LIF-dip measurement is not suitable for the low pulse-to pulse
electric field nor by ionization from excited level. reproducibility system.

e Spectral position and profile of the dip reflect the
splitted structure of the Rydberg level.


Vorführender
Präsentationsnotizen
For example, the electric field inside the cathode plasma and grid plasma, around them, the electric field may increase to some point.


Modified LIF-dip method A\‘(IT
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Excitation scheme for LIF-dip spectroscopy in xenon
[ J

The core of the measurement technique is a tunable dye laser
with a bandwidth of about 1.3 nm, which is used for resonant
excitation of the Rydberg level.

The spectral width of the laser covers the variation of the
electric field from a few hundred V/cm up to a few kV/cm.

e Xenon as a trace gas
 Three-photon resonant excitation.

In one shot, the electric field can be got through the dip position shift



Measurement setup
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Laser System:

Nd:YAG — Continuum Powerlite 7000, 650mJ 8ns

Dye laser 1 — Radiant Dye Laser. Dye solution: Coumarin 307,
wavelength: 499.258 nm, linewidth: 5 pm, accuracy of wavelength:
50 pm, energy: 1 mJ, SHG: BBO crystal.

Dye laser 2 — Cobra Dye Laser. Dye solution: Pyrromethene 597,
wavelength: 580-640 nm, linewidth: 1.3 nm, accuracy of wavelength:
18 pm, energy: 1 mlJ.

Test cell:

e distance between cathode and anode: 2 cm.

e position of electrodes: two exciting beams parallel to the
electrode surface, a crossover between cathode and
anode.

* applied voltage on electrodes: 0~15 kV.

Detection system:
ICCD Camera PCO Dicam Pro. A interference filter for 828.8

nm with bandwidth 1.0 nm



Cobra-Sirah: Special broad band dye laser S‘(IT
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sketch of the dye laser system

Changing the angle of prism, the resonance frequency changes.

* Line 1 and Line 2 has different resonance cell length ‘L.

 Between the two lines, the L changes in order.

* The output beam has a bandwidth of 1.3 nm.

* The distance between two modes is a constant of 0.018 nm, the
output beam contains about 70 modes.
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From the gain curve, in certain resonance cell length ‘L.

There exists one mode with maximum gain, whose
intensity of this frequency is maximum.

There exist other modes mixed in the same position
of output beam with lower intensity.



Cobra-Sirah: Spectral and spacial profile
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Wavelength distribution along the vertical axis of the beam profile

A spectrometer with a 1200 |/mm grating, 1000mm focus
lenght is used to measure the spectral distribution of the
dye laser along the beam profile.

* Selection position along axis of profile 1 mm step by step.

e Each position has the bandwidth of 0.5 nm.

* Each position has one wavelength with maximum intensity.
Corresponding to the mode which has the maximum gain.
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Relationship between peak intensity wavelength and beam profile

Calibration of peak intensity wavelength and beam profile.

Resonance wavelength with different intensity cover 3-4 mm along the
vertical axis of beam profile.
Peak intensity wavelength along beam profile changes in order.

Benefits:

Dip signal because of resonance wavelength covers a 3-4 mm region, is
easy to observe.

By finding the darkest dip signal among dark region, the peak intensity
wavelength can be got.



Stark effect: calculation method

11f,11g,11h,11i,

e Schrodinger equation: HP=Ep H=Ho+Hstark  11j,.,11Ins
e Construct H

zero-field energies are diagonal elements of Ho

Hstark is off-diagonal matrix, j-k coupling theory 18@10%0“'10"
. . . . Iy n-2
e Diagonalise H for each electric field F and
total magnetic quantum number M
e Eigenvalues of H are energies of the
perturbed states 9f,9g,9h, 9i,
9j,...,91n-3

A 41*41 matrix is constructed
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Rydberg level of Xenon: results of calculation
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From these curves, the shifts of energy level under electric field can be got.
The state 14s[3/2]1 : the energy level change from 96737.7 cm-1 to 96737.0 cm-1
under the electric field of 4 kV/cm.



‘Cold” measurements on the test facility.

intensity of fluorescence signal
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The cold measurement without
electric field is carried out.

Dip region occurs after tunable laser
applied.

Dip region has the darkest point
where peak intensity wavelength
exists.

When change the resonance
wavelength of dye laser, dip region
also shifts logicality.
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Calibration between Position along beam profile and wavelength shift.

Changing the wavelength of dye laser from 585.95 nm to 586.85
nm by step 0.1 nm, the shifts of dip positions can be got.

* 0.1 nm corresponding to 45 pixel. If the resonance wavelength of dye
laser is fixed. After apply electric field, the dip position shift 45 pixel
in monitor, the resonance wavelength shift of 0.1 nm can be got.

* Dip position shift error of 10 pixel (22 pm) can be measured. The
reason can be mode jump of laser. Since one mode jump can produce
18 pm error. This lower our accuracy of our measurement.



Measurements with electric field on the test facility.

intensity of fluorescence signal
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* The dip position shifts can be got in the monitor.

can be obtained.
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600 V/cm, 650 V/cm and 930 V/cm electric fields are applied.

Through calibration of position and wavelength, the wavelength shifts

44
62

Error analyze:

e One Mode jump error makes around 18 pm
error.
* Measurement error.

Mode jump error dominate!

External electric Theory wavelength
field (v/cm shift (pm
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Data after one mode jump error modified
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After one mode jump error modified, the
experimental data compare to theory data is
reasonable.

As the electric field increase, the wavelength
shift exponential increase, the mode jump
error influence will be lower.



Measurements with electric field on the test facility. A“(IT
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e 550V/cm and 500 V/cm electric fields are applied.
* The dip position shifts can be got in the monitor.

e Through calibration of position and wavelength, the wavelength shifts
can be obtained.

Electric field (V/cm) Dip position shift (pixel) Resonance wavelength shift (pm)
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Error analyze:

* Mode jump error makes around 18 pm error.
* Measurement error.

Mode jump error dominate!

Data analyze:

e Under 550 v/cm, the theory wavelength shift is 15 pm.

* One Mode jump error is 18 pm.

* |t can not be distinguish from real shift and one mode
jump error.

The minimum electric field can be measured is
600 V/cm.
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Benefits of modified LIF-dip diagnostic = ==wwoms

We propose a modified LIF-dip measurement, the electric field strength can be obtained in one measurement.

_ LIF-dip diagnostic Gesa facility

Sensitivity Minimum electric field: 600 v/cm. e Emission edge of the cathode
plasma — about 1 kV/cm
e At the front of target plasma —
about 10 kV/cm

Accuracy Electric field resolution: 50 V/cm (ranged
from 2000-5000 v/cm).

Space resolution Space resolution along the electric field: The width of Langmuir layer — several
50 um. hundreds micrometers.

Time Resolution Time resolution : 5 ns. Sub millisecond pulse duration.

Next Steps:

e Reduce mode jump error.
* Transfer this modified LIF-dip diagnostic from test cell to Gesa facility.
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