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Motivation

State of the art: Continuous-wave DNP-NMR (Dynamic nuclear polarization - Nuclear Magnetic Resonance)

Transfer of electron spin polarization to nuclear spin systems
Via: microwave irradiation at ≈ the electron Larmor frequency
Typical frequencies: 263, 395, 527 and 593 GHz

Future: pulsed DNP methods
Rapid and efficient polarization transfer
Not attenuated at high magnetic fields
Powerful, coherent pulses required

New source for coherent high power microwave pulses
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Generation of Ultra-Short Microwave Pulses

Idea [1]: Combine the electron-vacuum-tube technology with ideas from 
laser physics

[1] Ginzburg et. al. Technical Physics Letters 2015

Gyro-TWT technology

New pulsed source of coherent µW pulses

Kerr-Laser principle
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Generation of Ultra-Short Microwave Pulses

Joined RSF-DFG Project (IAP-RAS and KIT-IHM):
Generation of periodic ultra-short pulses with vacuum-electron-tubes
Target frequency: 263 GHz  400 MHz DNP-NMR
First prove of concept: 34 GHz  Experiment under preparation at IAP

For 34 GHz:
Pulse-width: 0.25 ns
Pulse-distance: 5.0 ns
Peak-Power: 300 kW

Generation of Ultrashort Pulses in Millimeter and Submillimeter Bands for 
Spectroscopy and Diagnostic of Various Media

Based on Passive Mode-locking in Electronic Devices

Train of ultra-short coherent pulses

[1] Ginzburg et. al. Technical Physics Letters 2015
[2] Ginzburg et. al. Phys. Plasmas 24 2017
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PULSE GENERATION IN A 
FEEDBACK LOOP
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Pulse Generation in a Feedback Loop

Method of passive mode locking (as in laser physics)
Feedback loop of amplifier and saturable absorber

Amplifier: high amplification of ultra short pulses
Saturable absorber: absorption of low power signals, transmission of high 
power signals

Pulse power: limited by the 
gain of the amplifier

Pulse width: determined by the 
bandwidth of the absorber

Pulse distance: determined by the time for 
passing through the feedback loop
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Pulse Generation in a Feedback Loop

Method of passive mode locking (as in laser physics)
Feedback loop of amplifier and saturable absorber

Amplifier: high amplification of ultra short pulses
Saturable absorber: absorption of low power signals, transmission of high 
power signals

How to realize this “µW laser”?
coupled with a

quasi-optical transmission 
systemhelical gyro-TWT as 

amplifier helical gyro-TWT 
as absorber
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HELICAL GYRO-TWT
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Gyro-TWT with helical corrugated interaction region [1]
r = r0 + h0 cos(mBφ-2πz/d)

Corrugation couples modes which fulfill:
m1-m2 = mB and     h1 – h2 = 2π/d

mB = 3 → coupling of TE2,1 and counter-rotating TE-1,1 mode to TE2,1 like 
eigenmode
Gyro-interaction at the 2nd harmonic

Gyro-TWT with helically corrugations

[1] G. DENISOV et al. IEEE 
TRANSACTIONS ON PLASMA 
SCIENCE, VOL. 26, NO. 3, JUNE 1998
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Gyro-TWT with helically corrugations

TE1,1

TE-1,1

Important: Single I/O-window operation [1]:

Advantage:
Suitable for high-power
input signals

[1] G. DENISOV et al. IEEE ELECTRON 
DEVICE LETTERS, VOL. 35, NO. 7, 
JULY 2014

HE11↕

↕ HE11



Institute for Pulsed Power and 
Microwave Technology

12 19.05.2020

QUASI-OPTICAL MIRROR 
SYSTEM DESIGNS
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Mirror System:
Requirements
Requirements

Decoupling of the output signal only on the path absorber-to-amplifier
 separation of signal paths
Tunable signal decoupling
 output power and stability
Tunable delay time
 pulse distance and stability
High Bandwidth ≥10 GHz
 short pulses

Mirror System
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Mirror System:
First Design – 2018 [1]

[1] A.Marek, 3rd International Conference on Terahertz and Microwave 
Radiation: Generation, Detection and Applications (TERA-2018) 

Reflection

Transmission

Operating principle:
Separation of the cross-polarized signal 
paths by mirrors with sinusoidal grading
Transmission through a grid of stacked 
metal plates

Features:
✔ Decoupling only on the path absorber-to-

amplifier
✔ Tunable decoupling coefficient
✖ Tunable delay time

Advantage:
High bandwidth of sinusoidal mirrors

Disadvantages:
Complicated mirror-positions
Impractical direction of output-signal
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Mirror System:
For 263 GHz Generator – Design 2020

Operating principle:
Separation of the cross-polarized signal 
paths through a grid of wires
Rectilinear grating as polarizer

Features:
✔ Decoupling only on the path absorber-

to-amplifier
✔ Tunable decoupling coefficient
✔ Tunable delay time

Advantages:
Simple positioning of all components 
and ports
Can be realized as transmission-line 
with overmoded corrugated 
waveguidesCorrugated Waveguide

Adjustable
Distance
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DESIGN OF COMPONENTS
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Mirror System for 263 GHz:
Beam Splitter– Requirements

Idea: Separation of the cross-polarized 
HE11 modes by a grid thin metal wires

Required properties:
Low back reflections
 S11 < −30 dB
High transmission
 𝑆𝑆21 > −0.05 dB
 𝑆𝑆31 < −20 dB
Good reflection
 𝑆𝑆13 > −0.1 dB
 𝑆𝑆43 < −16 dB
Bandwidth ≥ 10 GHz

↕↔

↕

↕

↔
↔

Semitransparent Grid Corrugated Waveguide

1

43

2

Vorführender
Präsentationsnotizen
-0.05 dB -> 98.85%-0.1 dB -> 97.5 %
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Mirror System for 263 GHz:
Beam Splitter– Optimization

1. Step: Guess initial parameter
2. Step: Optimize the separator by 
parameter-sweeps for different d

Optimal Parameter:
𝑑𝑑 = 0.15 mm 
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Mirror System for 263 GHz:
Beam Splitter– Optimization

KarLESSS Simulation
3. Step: Check of the Frequency 
dependence

4. Step: Check of max. field-strength
Max. electric field:

1 W  0.225 kV/m
2 kW  7.2 kV/m

5. Step: Check of ohmic losses and 
mode conversion

On-going
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Mirror System for 263 GHz:
Polarization Rotator – Requirements

Idea: Reflective rectilinear grating as 
polarizer

Rotate the polarization of a HE11 mode
A part of the signal can be coupled-out 
by the polarization separator
Tunable out-coupling by rotating the 
polarizer

Required properties:
Tunable polarization: 0 − 70%
𝑆𝑆11 < −30 dB
Bandwidth of 10 GHz

Miter Bend with polarizing grid

Polarizing Grid Corrugated Waveguide

↕

1

2 ↕↔
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Mirror System for 263 GHz:
Polarization Rotator – Optimization

Step 1: Optimization of the 
geometrical parameter for a high 
bandwidth

Simulations via CST
Incident plane wave
Sweep over frequency

Merit function: Ω = | 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|

CST-Setup

h

p

a

Optimal Parameter:
𝑝𝑝 = 0.75 mm 
𝑎𝑎 = 0.2 mm
ℎ = 0.218 mm
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Mirror System for 263 GHz:
Polarization Rotator – Results

Step 2: Full-wave simulation to check 
efficiency and S11 parameter for 
incident HE11 mode

Operating region:
𝟒𝟒𝟒𝟒𝟒 − 𝟏𝟏𝟏𝟏𝟒𝟒𝟒

Wide tunable decoupling 
𝟎𝟎 − 𝟕𝟕𝟎𝟎 %

Low back–reflections
𝑺𝑺𝟏𝟏𝟏𝟏 < −𝟒𝟒𝟎𝟎 dB

Step 3: Check the bandwidth
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Mirror System for 263 GHz:
Polarization Rotator – Results

4. Step: Check of max. field-
strength

Highest fields for decoupling 
of 50%
Max. electric field:

1 W  2 kV/m
2 kW  90 kV/m

5. Step: Check of ohmic
losses and mode conversion

On-going

KarLESSS Simulation

a.u.
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Mirror System for 263 GHz:
Adjustable Delay-Time

Idea: Adjustment of the delay-time due to an 
increase of the transmission way
Simplest solution: Gaps in the waveguides for the 
signal path Absorber  Amplifier

Losses are less critical
Goal: Increase of the delay-time by 1 ns

Increase of the transmission way of 30 cm 

GapCorrugated Waveguide

1

2

2 gaps
of 15 cm
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Mirror System for 263 GHz:
Adjustable Delay-Time

Transmission of a HE11 mode over a gap can be 
calculated by the following formula [1]:

Transmission of a HE11 mode at 263 GHz over a gap in 
a waveguide with a = 11 mm

GapCorrugated Waveguide

1

2
𝑆𝑆21 ≈ 1.7 𝐿𝐿 𝜆𝜆

2 𝑎𝑎2

3
2 dB

[1] J. L. DOANE & C. P. MOELLER (1994), INTERNATIONAL 
JOURNAL OF ELECTRONICS, 77:4, 489-509

Only very short gaps are possible
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Conclusion & Outlook

Conclusion
A user-friendly quasi-optical feedback-system for a 263 GHz pulsed 
generator is possible

High bandwidth
Low losses

With KarLESSS an in-house tool for the simulation and design of a 
complete quasi-optical feedback-system is available

Outlook
Better solution for a tunable delay-time is required
Design and PIC Simulations of the 263 GHz gyro-devices

We are looking forward to the upcoming experiments at IAP
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APPENDIX
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Simulation of Quasi-Optical Components

The quasi-optical components are simulated and designed with own tool 
KarLESSS

Originally developed for the simulation of the quasi-optical mode-converter in 
Gyrotrons

KarLESSS main features:
Full-wave analysis of arbitrary shaped perfect conductors based on the EFIE
Acceleration via several algorithms: ACA, ACA-SVD, S-ACA
FGMRES solver with zero-cost preconditioner
High order surfaces and high order basis functions
Highly parallelized on shared and distributed memory systems
Modular code basis

Upcoming features:
Waveguide-Ports
 Coupling of full-wave simulations with scattering-matrix methods
Support of dielectric and lossy materials
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