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LEO or MEO- Satellite Orbit 

(low earth or medium earth orbit) 

 

 

 

Geo-Orbit (geostationary earth orbit) 

To maintain a GEO communication satellite  

over 15 years on its position requires 775 kg 

of chemical propellant (Hydrazin), but only  

75 kg of Xe for electric propulsion. 

Exhaust velocity increase from 3km/s to 30km/s. 

To bring 1 kg into GEO orbit  costs 55.000.- $ 

 Saving in launch costs:  38.5 Mio $ 

 

 Alternatively more payload channels.  

Why ion propulsion ? 
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H2Sat Attitude Orbit Control System (AOCS) maneuvers by 

EP:  

 North-South Keeping (NSSK) 
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HEMPT technology 

 Electric propulsion for satellite station keeping and orbit raising 

 85% of the materials and 80% of the processes for the HEMP technology is based on 

tubes technologies 
Hollow cathode neutralizer 

HEMPT 3050 
Electro

n beam 
Electrongun 
with cathode 
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radio frequency (RF) plasma excitation

(alternatively: DC, -wave)

neutral propellant atoms

propellant ions

anode

plasma / ionisation

chamber

propellant 

feed

hollow cathode

neutraliser~ 20 V~ 1000

...2000 V

accelaeration grid

screen grid

ion extraction

system

 Separate Ionization and acceleration 

Multiple grids to confine and accelerate ions 

Complicated multi-voltage power supply  

 Space charge limitation on ion current density 

 Plasma etching of all materials with plasma or beam contact 

Grid erosion limits lifetime 

Traditional Ion Thruster Concepts 

Gridded Ion Thrusters 
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Hall-Effect Thrusters 

 

Radial magnetic field produces Hall currents and ion acceleration 

 Electrons follow magnetic field lines  

 Plasma wall contact leads to high erosion and reduces lifetime 

Operation limited to low voltage and therefore low ISP 

Traditional Ion Thruster Concepts 

current-Hall azimuthal  Drift

     :radii Larmor ionchannele









BE

rLr
Be

Mv
r ;



 7 

HEMPT Operational Principle: 

Magnetic field confines plasma electrons and 

shields the discharge channel 

Axial impedance at the cusps with radial 

magnetic field 

Magnetic mirror and electrostatic shielding at 

the cusps 

Properties: 

Minimized plasma-wall contact  no channel 

erosion  high exhaust velocities and lifetime 

 Thruster and system architecture with minimum 

complexity  cost-efficient & reliable 

 Stable operation even at high voltage 

    from 300 V…2,000 V allows high ISP 

High Efficiency Multistage Plasma Thruster HEMPT: Concept 

 



 8 Dual operating Mode 

 HEMPT Technology generally 

allows dynamic alteration of 

operating voltage 

 No tuning / adaptation needed to 

change operational point 

 Dual operation allows in flight trade 

of between ISP and Thrust 

 x2 voltage switch requires on power 

supply side only one relay as 

typically more than one rectifier 

stage is used 

 

Analogue to gear shift of cars 

 

HV Supply 

THR 
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Minimised Channel Erosion 

Result: < 5 microns / 1200h @ 1000V anode voltage  

 erosion is negligible! 

Discharge channel analysis after 1200h nominal HEMPT operation at 

1000V anode voltage for SmallGEO 



 10 In orbit demonstration 

 Heinrich-Hertz (H2Sat) satellite mission 

 German communication satellite 

 Geo-stationary orbit in 36,000 km altitude 

 15 years service life 

 Based on OHB‘s SmallGEO plattform 

 Position control in GEO by ion thrusters 

 Provides in-orbit verification of novel type 

satellite communication and transmission 

technologies 

 Launch scheduled for 2019 



 11 HTM 

HEMP-Thruster Module (HTM) Components: 

 HEMP-Thruster 3050 

 Neutralizer HCN 5000 

 Xenon Flow Control Unit 

 

HV Anode 

Interface 

Fluidic 

Interface 

Low Voltage 

NTR Interface 

Low Voltage 

FCU Interface 

Proportional Flow 

Control Valve 

Neutralzer 

HCN5000 

HEMP-T 3050 Radiator 

Anode 

Mechanical and 

Thermal Interface 
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Power Supply has a modular design:  

 ASM to generate HV for thruster anode  

 NHKS for supply and control of Neutralizer & propellant flow 

 ACMU to measure HV current to thruster  

 ICAU to control and supervise all modules 

Power Supply and Control Unit - PSCU 

ICAU 

NHKS1 

NHKS2 

NHKS3 

NHKS4 

ASM2 

ASM1 

ACMU 

MIL1553 

HTM2 

HTM1 

50V Bus 

PSCU 

PSCU 



 13 HTM-EM/EQM test campaign 

Integration 

EMI/EMC Test 

Vibration & Shock Test 

Thermo Vacuum Test 

Quantity/Unit Req. Test Value Compl. 

Thrust ≥ 44 mN 44.9 mN Yes 

Thruster power ≤ 1,380 W 1,370 W Yes 

Neutraliser discharge power ≤ 42 W 16.3 W Yes 

HTM specific impulse ≥ 2,300 s 2,474 s Yes 

Mechanical Load Sine Vibration 20 g 20 g Yes 

Mechanical Load Random 11.6 gRMS 11.6 gRMS Yes 

Mechanical Load Shock  2,000 g 3,500 g Yes 

Operational hours  7,200 h 8,000 h Yes 

  Excellent basis for lifetime testing 

8,000 h Endurance Test partly w/ PSCU-EM 

2x 

Performance Test 
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HTA 3050 QM lifetime testing 

8,580 firing hours 

10,200 cycles 

  

  

    

  

  

  

    

  

  

  

Day 1 Day 900 

Start 

4,930 firing hours 

3,000 typical cycles 

  

HTM-QM1 

& PSCU-EQM 

HTM-QM2 

  

Start 

2015 ‘17 ‘16 

Day 1 Day 900 2015 ‘17 ‘16 

Accelerated cycles 

Cold start cycles 

‘18 

‘18 

HTM-QM1+PSCU-EQM:  

Gesamt-Betriebsstunden:  2913 Std (von 8583) 

Qual-Zyklen:   3455 (von 10200) 

33.9% 

HTM-QM2:  

Gesamt-Betriebsstunden: 1890 Std (von 4932) 

Qual-Zyklen: 1150 (von 3000)  

38% 



 15 
HEMP-TIS Lifetime Test – results – simultaneous operation 

 HTM-QM1 and HTM-QM2 test sequences overlap  

• Stable start-up, operation and shut-down at the presence of the second 

operating HTM 

 

 

HTM-QM2 (left) and HTM-QM1 (right) operating during the Lifetime Test   
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HEMP-TIS Lifetime Test – results – HTM-QM1 performance 

 HTM-QM1: 1900 h and 2200 cycles  

 Stable performance, within specifications 

 

 



 17 EVaSimHT 

Particle in cell simulation 

• Kinetic plasma simulation of the HEMP Thruster 

• FEM simulation not  possible at low densities 

• Code is developed by the University Greifswald 

• Problem with regions of high density difference 

Simulation auf atomarem Niveau Geometrie DM3a 
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Computational domain for the simulation of the HEMP DM3a thruster with a 

calculated potential profile. 

PIC Simulation  

Particle in Cell (PIC) Simulation of the Ernst Moritz Arndt 

University Greifswald 
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Electron (a) and ion (b) density profiles of the HEMP DM3a thruster. 

PIC Simulation  



 20 roadmap 

DM3a 
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Breadboard Model 

EV1 EV0 
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EPIC/DLR/ESA 



 21 HEMP in operation 

Photography of the HEMP 3050 in 

operation 

Purple glow: Hollow cathode 

neutraliser 

Blue: Plasma, Plume and Beam 
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22 

Look into channel of DM 7_14_2 (BB HEMP 3050) 

No plasma wall contact nor wall erosion 

4  New Results: HEMP thruster DM7, Focused Plasma beam 
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Thank you for your attention!  

HEMP-TIS is supported by the Federal 

Ministry of Economics and Technology  

through German Aerospace Center DLR, 

Space Administration, under contract 

number 50RS0803 


